منابع مشابه
Stability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کاملAsymptotic Stability of Harmonic Maps under the Schrödinger Flow
For Schrödinger maps fromR2×R+ to the 2-sphere S2, it is not known if finite energy solutions can form singularities (blow up) in finite time. We consider equivariant solutions with energy near the energy of the two-parameter family of equivariant harmonic maps. We prove that if the topological degree of the map is at least four, blowup does not occur, and global solutions converge (in a disper...
متن کاملHarmonic Maps and Stability on f-Kenmotsu Manifolds
In Section 2, we give preliminaries on f-Kenmotsu manifolds. The concept of f-Kenmotsu manifold, where f is a real constant, appears for the first time in the paper of Jannsens and Vanhecke 1 . More recently, Olszak and Roşca 2 defined and studied the f-Kenmotsu manifold by the formula 2.3 , where f is a function on M such that df ∧ η 0. Here, η is the dual 1-form corresponding to the character...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2018
ISSN: 2227-7390
DOI: 10.3390/math6060094